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Abstract

Transmission loss of a rectangular expansion chamber, the inlet and outlet of which are situated at arbitrary locations of

the chamber, i.e., the side wall or the face of the chamber, are analyzed here based on the Green’s function of a rectangular

cavity with homogeneous boundary conditions. The rectangular chamber Green’s function is expressed in terms of a finite

number of rigid rectangular cavity mode shapes. The inlet and outlet ports are modeled as uniform velocity pistons. If the

size of the piston is small compared to wavelength, then the plane wave excitation is a valid assumption. The velocity

potential inside the chamber is expressed by superimposing the velocity potentials of two different configurations. The first

configuration is a piston source at the inlet port and a rigid termination at the outlet, and the second one is a piston at the

outlet with a rigid termination at the inlet. Pressure inside the chamber is derived from velocity potentials using linear

momentum equation. The average pressure acting on the pistons at the inlet and outlet locations is estimated by integrating

the acoustic pressure over the piston area in the two constituent configurations. The transfer matrix is derived from the

average pressure values and thence the transmission loss is calculated. The results are verified against those in the literature

where use has been made of modal expansions and also numerical models (FEM fluid). The transfer matrix formulation

for yielding wall rectangular chambers has been derived incorporating the structural–acoustic coupling. Parametric studies

are conducted for different inlet and outlet configurations, and the various phenomena occurring in the TL curves that

cannot be explained by the classical plane wave theory, are discussed.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Rectangular expansion chamber silencers are extensively used in HVAC ducts as a plenum chamber and
other industrial applications. Four-pole parameters are very useful for the analysis of complex HVAC system
with different duct configurations.
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Munjal [1] discussed the basic concepts of the four-pole parameters and derived them for different silencer
elements mostly in the range of plane waves with rigid wall configurations. Kim and Soedel [2] derived a
generalized transfer matrix formulation from the pressure response solution including higher-order modes.
They mentioned that this approach is applicable provided the correct pressure response solution is known, and
demonstrated this method for an annular cylinder using a point source excitation. There might be a numerical
convergence problem near the point source location and this could be overcome by a piston source modeling.

Kim and Kang [3] gave a general formulation to derive the transfer matrix based on Green’s functions for a
circular expansion chamber with arbitrary locations of inlet, outlet port, termination conditions, and validated
the results with experiments. Ih [4] discussed the transfer matrix formulation for different configurations of
rectangular plenum chamber using the modal expansion method and validated the same with available
literature. He used Munjal’s collocation method [5] to validate the centered-inlet and outlet configuration.

The present paper discusses the same problem as in Ref. [4] using Green’s function to calculate the inside
pressure field. The current analytical formulation incorporates not only the rigid walls chambers but also the
ones with yielding walls. The assumptions involved in the formulation are: no mean flow and no acoustic
source inside the plenum chamber. The Green’s function approach has an advantage in modeling the
absorptive boundary conditions and also flexible walls. The rectangular expansion chamber is modeled as a
piston-driven rectangular cavity where the pistons are fluctuating in a predetermined manner. The four-pole
parameters are explicitly given in a very simple form using Green’s function of the rectangular cavity in terms
of a finite number of modes. Initially, the four-pole parameters of the offset inlet and outlet configuration are
derived. The four-pole parameters of the other inlet/outlet configurations are adopted from the offset
configuration without further calculations. A transfer matrix formulation has been developed for the yielding
wall rectangular chamber by considering the structural–acoustic coupling. The transfer matrix so derived may
be combined with the transfer matrices of the muffler or system elements upstream and downstream in order
to predict the overall TL of the system.

2. Theoretical formulation

2.1. Green’s function derivation

Fig. 1 shows the schematic diagram of a simple rectangular expansion chamber with different inlet and
outlet configurations. If the dimensions of the inlet and outlet port were small compared to wavelength, then
the uniform velocity assumption would be valid. Green’s function for rectangular cavity in terms of the cavity
mode shapes is given by [6]

Gð~xj~x0Þ ¼
X
mpn

c̄mpnð~xÞcmpnð~x0Þ

k2
mpn � k2

: (1)

Here, k ¼ o/c0 is the wavenumber, and the mode shape of a rectangular cavity is given by [6]

cmpnð~xÞ ¼ cos
mpx

a
cos

ppy

l
cos

npz

b
, (2)

with the corresponding wavenumber and the natural frequency as

kmpn ¼
mp
a

� �2
þ

pp
l

� �2
þ

np
b

� �2� �1=2
, (3)

and

ompn ¼ pc0
m

a

� �2
þ

p

l

� �2
þ

n

b

� �2� �1=2
, (4)

and the orthonormal function c̄mpnð~xÞ is written as

c̄mpnð~xÞ ¼
emepen

V
cmpnð~xÞ. (5)
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Fig. 1. Schematic diagram of rectangular expansion chamber with different inlet and outlet configurations: (a) offset inlet, outlet (two

views); (b) centered inlet, outlet; (c) reverse flow expansion with long end-chamber; (d) reverse flow expansion with short end-chamber;

(e) end-in, side-out chamber; (f) long neck Helmholtz-resonator; and (g) short neck Helmholtz-resonator.
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Here, ~x and ~x0 are the response coordinates vector and source coordinates vector, respectively; n, p and m are
integers; a, l and b are dimensions (in m) of the rectangular expansion chamber in the x, y and z coordinate
directions, as shown in Fig. 1a; and V is volume of the chamber (V ¼ alb). The normalization factors are given
by em ¼ 1 if m ¼ 0 and em ¼ 2 if mX1, en ¼ 1 if n ¼ 0 and en ¼ 2 if nX1, ep ¼ 1 if p ¼ 0 and ep ¼ 2 if pX1;
and c0 is speed of sound in m/s.

Substituting Eq. (5) into Eq. (1) yields

Gð~xj~x0Þ ¼
X
mpn

emepen

V

cmpnð~xÞcmpnð~x0Þ

k2
mpn � k2

. (6)

The acoustic wave equation that determines the acoustic field in the rectangular chamber can be expressed
as [6]

r2fþ k2f ¼ �Qð~xÞ, (7)

where Q is the embedded source, if any, for the sake of generality.
Assuming harmonic time behavior, the velocity potential may be written as fð~x; tÞ ¼ fð~xÞejot.
Thus, acoustic pressure

pð~x; tÞ ¼ �r
qfð~x; tÞ

qt
¼ �rjofð~xÞ (8)

and particle velocity

uð~xÞ ¼ gradfð~xÞ ¼ rfð~xÞ. (9)

2.2. Derivation of the velocity potential

Total velocity potential inside the chamber is expressed by superimposing the velocity potentials
generated due to the inlet and outlet piston sources. Thus, the expression for total velocity potential can
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be written as [3]

fð~xÞ ¼ �
Z Z

Gð~xj~x0ÞN1ðx0; z0Þ dsA þ

Z Z
Gð~xj~x0ÞN2ðx0; z0Þ dsA

� �
. (10)

Let us assume

f1ð~xÞ ¼ �

Z Z
piston1

Gð~xj~x0ÞN1ðx0; z0Þ dx dz (11a)

and

f2ð~xÞ ¼ �

Z Z
piston2

Gð~xj~x0ÞN2ðx0; z0Þ dx dz, (11b)

where

N1ðx0; z0Þ ¼ u1 H x� ac1 �
a1

2

� �n o
�H x� ac1 þ

a1

2

� �n oh i
H z� bc1 �

b1

2

� �� 	�

�H z� bc1 þ
b1

2

� �� 	�
� u1f 1ðx0; z0Þ, (11c)

N2ðx0; z0Þ ¼ u2 H x� ac2 �
a2

2

� �n o
�H x� ac2 þ

a2

2

� �n oh i
H z� bc2 �

b2

2

� �� 	�

�H z� bc2 þ
b2

2

� �� 	
� u2f 2ðx0; z0Þ. (11d)

Here, H ( � ) is Heaviside function, and u1 and u2 are velocities of the hypothetical pistons at the inlet and
outlet, respectively.

Substituting the Green’s function expression (6) into Eq. (11a) gives

f1ðx; y; zÞ ¼ �

Z bc1þb1=2

bc1�b1=2

Z ac1þa1=2

ac1�a1=2

X
mpn

emepen

V

cmpn x; y; zð Þ

k2
mpn � k2

cmpnðx0; y0; z0Þu1f 1ðx0; z0Þ dx0 dz0 (12)

¼ �u1
X
mpn

emepen

V

cmpnð~xÞ

k2
mpn � k2

cos
ppy0

l
Cm1Cn1

h i
, (13)

where

Cm1 ¼

a1 for m ¼ 0

2a

mp
cos

mpac1

a

� �
sin

mpa1

2a

� �
for ma0

8<
: (14a)

and

Cn1 ¼

b1 for n ¼ 0

2b

np
cos

npbc1

b

� �
sin

npb1

2b

� �
for na0

8><
>: . (14b)

Similarly, velocity potential f2 due to the piston source at the outlet may be obtained. Generalizing the results,
the velocity potential caused by port i can be written as

fið~xÞ ¼
X
mpn

Si
mpncmpnð~xÞ, (15)
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where

Si
mpn ¼

ð�1Þiemepen cosðppyio=lÞ

k2
mpn � k2

CmiCniui

V
(16)

and cmpn is given by Eq. (2), and Cmi, Cni are given by Eq. (14), with subscript 1 being replaced by i; where
i ¼ 1 and 2.

2.3. The transfer matrix derivation

The transmission loss of the chamber, which expresses the performance of the rectangular chamber, can be
obtained from the four-pole parameters, which in turn may be derived from the velocity potentials. Making
use of Eq. (8), acoustic pressure is written as pi ¼ �jor0fið~xÞ.

The average sound pressure acting on the piston ‘‘i’’ with cross-sectional area ‘‘Ai’’ by the velocity field,
which is generated by the rectangular piston ‘‘i0’’, can be written as

p̄ii0 ¼ �
jor0

Ai

Z Z
piston i

fi0 ð~xÞ dsi (17)

or

p̄ii0 ¼
�jor0

Ai

Z aciþai=2

aci�ai=2

Z bciþbi=2

bci�bi=2
fi0 dz dx. (18)

Substituting Eq. (15) into Eq. (18) gives

p̄ii0 ¼
�jor0

Ai

Z aciþai=2

aci�ai=2

Z bciþbi=2

bci�bi=2

X
mpn

Si0

mpncmpnð~xÞ dz dx. (19)

Substituting Eq. (16) into Eq. (19) gives

p̄ii0 ¼ ð�1Þ
i0 jor0ui0

Ai

X
mpn

emepen

V
�
ð�1Þ

k2
mpn � k2

cos
ppyi0o

l

� �
cos

ppyio

l

� �
Cmi0Cni0CmiCni. (20)

By rearranging the terms, it can be expressed as

p̄ii0 ¼
ð�1Þi

0

AiAi0
� jZ0vi0

X
mpn

emepen

l
�

�k

k2
mpn � k2

 !
cos

ppyi0o

l

� �
cos

ppyio

l

� �
Cmi0Cni0CmiCni. (21)

Here, Z0 ¼ r0c0/S is the characteristic impedance of the chamber, r0 the air density, c0 the speed of sound, and
S ¼ ab the cross-sectional area of the chamber.

Defining the volume velocity vi ¼ Aiui, and

Eii0 �
�1

AiAi0

X
mpn

emepen

l
�

k

k2
mpn � k2

 !
cos

ppyi0o

l

� �
cos

ppyio

l

� �
Cmi0Cni0CmiCni, (22)

the averaged acoustic pressures on the surfaces of the two ‘‘pistons’’ may be written as

p̄ii0 ¼ ð�1Þ
i0 jZ0vi0Eii0 . (23)

For the condition i ¼ i0 Eq. (22) reduces to

Eii ¼
�1

A2
i

X
mpn

emepen

l
�

k

k2
mpn � k2

 !
cos2

ppyio

l

� �
C2

miC
2
ni; i ¼ 1 or 2. (24)

From Eq. (22) it may be noted that Eii0 ¼ Ei0i, which shows that these values are independent of the inlet and
outlet port (or piston) positions. In other words, E-functions satisfy the reciprocity principle.
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The total sound pressure acting on the inlet and outlet ports or pistons can be expressed as

p̄1 ¼ p̄11 þ p̄12 ¼ �jv1Z0E11 þ jv2Z0E12 (25a)

and

p̄2 ¼ p̄22 þ p̄21 ¼ jv2Z0E22 � jv1Z0E21. (25b)

The transfer matrix of the rectangular expansion chamber of Fig. 1a, relating the acoustic state variables at the
inlet and outlet may now be written as

p̄1

v1

" #
¼

T11 T12

T21 T22

" #
p̄2

v2

" #
. (26)

Making use of Eq. (25), the four-pole parameters Tii0 can be written in terms of the E-functions as follows [4]:

T11 ¼
p̄1

p̄2

� �
v2¼0

¼
E11

E12
, (27a)

T12 ¼
p̄1

v2

� �
p̄2¼0

¼ jZ0 E12 �
E11E22

E12

� �
, (27b)

T21 ¼
v1

p̄2

� �
v2¼0

¼ j Z0E12ð Þ
�1, (27c)

T22 ¼
v1

v2

� �
p̄2¼0

¼
E22

E12
. (27d)

The transmission loss can be expressed in terms of the four-pole parameters as [1]

TL ¼ 20 log10fðZ2=Z1Þ
1=2
jT11 þ T12=Z2 þ T21Z1 þ T22ðZ1=Z2Þj=2g, (28)

where Z1 and Z2 are characteristic impedances of the inlet duct and outlet duct, respectively: Z1 ¼ r0c0/S1 and
Z2 ¼ r0c0/S2, where S1 ¼ a1b1 and S2 ¼ a2b2.

2.4. Straight-flow configurations

The configurations shown in Figs. 1a and b are the straight-flow configurations. Generally, in this
configuration the inlet and outlet port openings face each other. The quantities required to calculate the
four-pole parameters of the straight-flow configuration in Figs. 1a and b can be deduced from Eqs. (22)
and (24) as

E11 ¼
�1

ða1b1Þ
2

X
mpn

emepen

l
�

k

k2
mpn � k2

 !
C2

m1C
2
n1, (29a)

E12 ¼ E21 ¼
�1

ða1b1Þða2b2Þ

X
mpn

emepen

l
�

k

k2
mpn � k2

 !
Cm1Cm2Cn1Cn2ð�1Þ

p, (29b)

E22 ¼
�1

ða2b2Þ
2

X
mpn

emepen

l
�

k

k2
mpn � k2

 !
C2

m2C
2
n2. (29c)

2.5. Reverse-flow configuration

Generally in this configuration the inlet and outlet ports are on the same face and the flow direction is
reversed as shown in Figs. 1c and d. The quantities required to calculate the four-pole parameters in the
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reverse flow are E11, E12 and E22. Expressions for E11 and E22 are the same as for the straight-flow
configurations. E12 is obtained from Eq. (22) as

E12 ¼
�1

ða1b1Þða2b2Þ

X
mpn

emepen

l

k

k2
mpn � k2

 !
Cm1Cm2Cn1Cn2. (30)
2.6. The end-in side-out configuration (EISO)

Fig. 1e shows the EISO cross-flow configuration. Generally in this configuration, inlet and outlet port are in
the mutually perpendicular faces. The quantity required to calculate the four-pole parameter, E11, is the same
as for the straight-flow configuration, and the remaining quantities E12 and E22 are expressed by replacing b2
with rectangular piston width l2 in the reverse-flow configuration E12 and E22:

E12 ¼
X
mpn

�1

ða1b1a2l2Þ

emepen

l

k

k2
mpn � k2

 !
ðCm1Cm2Cn1Cn2Þ (31a)

and

E22 ¼
X
mpn

�1

ða2l2Þ
2

emepen

l

k

k2
mpn � k2

 !
ðCm2Cn2Þ

2. (31b)
2.7. Helmholtz resonators

The four-pole parameters for Helmholtz resonator (Figs. 1f and g) are expressed as [3]

T11 ¼ 1, (32a)

T12 ¼ 0, (32b)

T21 ¼
j

Z0E11 �
Sotn

a1b1

� �, (32c)

T22 ¼ 1. (32d)

Here, acoustic inertance of the neck Sotn/a1b1 is added to the compliance of chamber volume in the four-pole
parameters T21 of Helmholtz-resonator. S ¼ ab, and a1 and b1 are cross-dimensions of the neck. E11 represents
the self-inertance and it is identical to E11 in the straight-flow configuration (see Eq. (29a)).

2.8. Rectangular chamber with yielding wall

The sound field inside the chamber is through the imposed surface piston source and coupling between
acoustic space and flexible wall. A strong coupling is assumed between the chamber and the flexible plate, and
a weak coupling between the flexible plate and the outside radiated acoustic field.

General equations of the inside expansion chamber pressure p at location x and the compliant wall
vibration velocity w at location z on the flexible plate for the uncoupled cavity modes N and structural
modes M are

pðx;oÞ ¼
XN

n¼1

cnðxÞanðoÞ ¼ wTa (33a)
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and

wðz;oÞ ¼
XM
m¼1

fmðzÞbmðoÞ ¼ UTb, (33b)

where cn(x) is the uncoupled acoustic mode shape function, an(o) is the complex amplitude of the nth acoustic
pressure mode, fm(z) is the uncoupled vibration mode shape function, and bm(o) is the complex amplitude of
the mth vibration velocity mode.

The structural mode shape function for a simply supported rectangular plate normalized by its surface
area is [7]

fmðzÞ ¼ 2 sin
m1px

L1

� �
sin

m2py

L2

� �
, (34)

where m1 and m2 are mode numbers with positive integers.
The modal acoustic pressure vector a can be expressed in the matrix form as

a ¼ Zaðqþ qsÞ, (35)

where Za ¼ Ar0c20=V is an (N�N) diagonal matrix defined as the uncoupled acoustic modal impedance
matrix: qs ¼ Cb; q is the N length modal source strength vector, and qs is the modal source vector due
to vibration of the structure. Matrix A is an (N�N) diagonal matrix. It contains acoustic mode resonance
terms [7]. C is an (N�M) matrix defined as coupling coefficient between nth acoustic mode and mth structural
mode.

The modal vibration amplitude vector b can be expressed in the matrix form as

b ¼ Ysðg� gaÞ (36a)

ga ¼ CTa (36b)

where g is the generalized modal force vector due to the external force distribution, ga is the modal force vector
acting on the acoustic system, Ys ¼ B/(rshSf) is the (M�M) diagonal matrix defined as the uncoupled
structural modal mobility matrix, B is an (M�M) diagonal matrix consisting of structural mode resonance
term, rs and h denote density of the plate material and thickness of the plate, respectively.

Combining Eqs. (35) and (36a) yields the acoustic and structural modal amplitude vectors a and b in terms
of the modal excitation vectors q and g:

a ¼ ðIþ ZaCYsC
T
Þ
�1Zaðqþ CYsgÞ, (37a)

b ¼ ðIþ YsC
TZaCÞ

�1Ysðg� CTZaqÞ. (37b)

Substituting pressure equation into Eq. (17) gives

p̄ii0 ¼
1

Ai

Z Z
piston i

XN

n¼1

an;i0cnð~xÞ dsi. (38)

Substituting Eq. (2) into Eq. (38) and after simplification, it can be written as

p̄ii0 ¼
qTi ai0

Ai

, (39a)

where rth element of vector qi for the (m, p, n) mode is given by

qr;i ¼ CmiCni cos
ppyi

l

� �
. (39b)

Cmi and Cni are given in Eqs. (14a) and (14b), respectively. Assuming a unit particle velocity piston source
and the E-function, the four-pole parameters in Eqs. (26) for a rectangular expansion chamber are expressed
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as under:

E11 ¼
jqT1 a1

Z0ða1b1Þ
2
, (40)

E21 ¼ E12 ¼
j

Z0

� �
qT1 a2

ða1b1a2b2Þ
, (41)

E22 ¼
j

Z0

� �
qT2 a2

ða2b2Þ
2
. (42)

The proposed analytical formulation for yielding walls is applied to a rectangular expansion chamber with a
simple supported flexible wall. The dimensions of the chamber are: a ¼ b ¼ 0.15m, a1 ¼ b1 ¼ a2 ¼ b2 ¼ 0.05m,
ac1 ¼ bc1 ¼ ac2 ¼ bc2 ¼ 0.125m, and wall thickness ¼ 0.001m. Materials properties used in the analytical
calculations are: density ¼ 2770 kg/m3, Young’s modulus ¼ 71� 109N/m2, and Poisson’s ratio ¼ 0.33.

3. Numerical model

An FEM based numerical model has been used here to validate and compare the computational time
between the analytical model and the numerical model. The ‘‘FEM fluid’’ analysis has been performed in the
commercial package named SYSNOISE [8]. A simple rectangular expansion chamber as shown in Fig. 1b with
dimensions of a ¼ b ¼ 0.15m, a1 ¼ b1 ¼ a2 ¼ b2 ¼ 0.05m, ac1 ¼ bc1 ¼ ac2 ¼ bc2 ¼ 0.125m. The inlet is
provided with a uniform velocity source and at the end termination impedance ‘‘r0c0 ¼ 416.5 kgm�2 s�1’’ is
applied to simulate the anechoic termination condition. The transmission loss is calculated using the inlet and
outlet pressure and velocities, and the resulting expression is given as [1]

TL ¼ 20 log
pin þ r0c0uin

2r0c0uout










 (43)

A mesh of 4750 elements with 5736 nodes was used for these calculations. Two times the maximum transverse
dimension of the piston has been used as the length of the inlet and outlet duct in order to ensure that
evanescent waves generated at the inlet and outlet decay out and only the plane waves exist. The existing mesh
is valid up to a frequency of 5037Hz, based on the assumption of a minimum of six elements per wavelength.
The analysis is conducted from 10 to 3000Hz in steps of 10Hz. Computations are carried out by using laptop
(Dell latitude D620 with 1GB ROM). The computational time for analytical model for 300 frequency steps is
13 seconds including I/O, whereas the numerical model computational time is 105 seconds, excluding the pre-
and post-processing time.

Fig. 2 shows that the transmission loss of a rectangular chamber calculated by the analytical method
presented here tallies closely with that of the numerical model. Besides, the analytical method captures the
higher-order modes effect very well.

4. Results and discussion

It may be noted that the transfer matrix parameters of all configurations shown in Fig. 1 are expressed in
terms of the E-functions given by Eqs. (22) and (24); only marginal alterations are needed for different
configurations. This is a marked simplification over the modal expansion method proposed in Ref. [4], which
has been used here to validate the proposed Green’s function method to calculate the transmission loss of the
rectangular expansion chamber with different inlet and outlet configurations shown in Fig. 1.

Fig. 3 shows a comparison of the proposed method and the modal expansion method to calculate
transmission loss for the reverse flow configuration shown in Fig. 1c. The results may be seen to agree very
well throughout the frequency range. The dips in TL correspond to the higher-order mode excitation, as was
observed in Ref. [9]. The asymmetric modes (1,0,0) and (1,0,1) are excited at 1133 and 1603Hz, respectively.
The dips at 2267 and 2534Hz are due to the (2,0,0) and (2,0,1) modes, respectively.
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In Fig. 4, a comparison is made between the results of the centered inlet/outlet configuration with the offset
inlet/outlet configuration, which shows deviation from the plane wave behavior at frequencies above 1000Hz.
In the centered inlet/outlet configuration, higher-order modes are generated at frequencies of 1800Hz
onwards. The same behavior is observed in the modal expansion method [4]. The offset configuration results
show higher-order mode interaction with plane wave modes. The same observation has been made by Munjal
with his collocation method [5]. Transverse modes of (1,0) (0,1) and (1,1) are not excited in the centered inlet/
outlet configuration because the inlet/outlet ducts are located on the modes’ nodal lines (zero pressure).
However, the transverse modes (1,0) and (0,1) are excited in the off-set configuration at 1133Hz.

Fig. 5 shows a comparison of the proposed method and the modal expansion method to calculate
transmission loss of the EISO configuration (Fig. 1e). There is excellent agreement between the two
methods for this configuration too. There is a peak in TL at 800Hz due to the change in the outlet
port location configuration from the centered inlet and outlet configuration, as shown in Fig. 3 with
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Fig. 4. Effect of the inlet and outlet port location in rectangular expansion chamber (a ¼ b ¼ 0.15m, a1 ¼ b1 ¼ a2 ¼ b2 ¼ 0.05m, centered
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—— offset configuration and - - - - centered configuration.
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ac1 ¼ bc1 ¼ ac2 ¼ lc2 ¼ half of a ¼ b. This is the tuned-chamber effect discussed in Refs. [10,11]. This
configuration has an advantage of maintaining 20 dB of transmission loss over a larger frequency range.

Fig. 6 shows the Helmholtz resonator transmission loss including its 3-D effect for a thin neck length
(Fig. 1g). In this case, there is a small deviation between the Ih’s modal expansion method [4] and the proposed
Green’s function method. This may be due to the neglect of the evanescent modes in the Green’s function
method, which amounts to overlooking the end-correction effect.

Analytical transmission loss results, calculated for a rectangular chamber with one yielding wall, are shown
in Fig. 7. It may be noted that the transmission loss values calculated by means of the proposed analytical
model coincide very well with those of the numerical model. There is a small discrepancy between the two
models near peaks in TL at 1180 and 1440Hz. The computation time for 300 frequency steps is 1.75 minutes in
the analytical model and 65 minutes in the numerical model, excluding pre- and post-processing. Thus, the
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proposed model is computationally very efficient. The first N-curve near 160Hz may be due to the coupling
between the chamber and yielding wall. This indicates that at this frequency the energy is fluctuating between
acoustic volume and structure. The structural–acoustic coupling plays a critical role in transmission loss
prediction at low frequencies in a narrow-band region. The dips in TL curve of the analytical and numerical
model coincide closely. Hence, the proposed analytical model would seem to be adequate for engineering
applications.
5. Conclusions

An analytical method is proposed in this paper to predict the transmission loss as well as the four-pole
parameters of rectangular rigid-wall expansion chamber for different inlet and outlet configurations,
incorporating 3-D effects, and making use of Green’s functions. This method is validated by means of the
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FEM results and also the results available in the literature that make use of a modal expansion method, and is
shown to be considerably simpler and more general than the latter.

The transfer matrices derived in this paper for different configurations are computationally more efficient
than the corresponding numerical methods. The proposed analytical method illustrates the higher-order
effects on TL curves that cannot be described by the classical plane wave theory. The derived transfer matrix
may be combined with the transfer matrices of other constituent elements upstream and downstream in order
to compute the overall transmission loss or insertion loss of the system. Thus, 3-D effects of an expansion
chamber are taken into account while following 1-D theory in the remainder of the muffler.

The transfer matrix formulation of a rectangular chamber incorporating the flexibility of one of the
chamber walls has been discussed and validated with the numerical models. The proposed model incorporates
3-D effects along with the acoustical and structural wave coupling phenomena.
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